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Abstract: The effectiveness of chemotherapy and radiotherapy to treat lung cancer is limited 
because of highly metastatic nature. Novel strategies and drugs to attenuate metastatic activity are 
urgently required. In this study, red fluorescence proteins (RFP)-labeled A549 human lung cancer 
cells were orthotopically implantation, where they developed primary tumors. Metastasis in brain 
and intestines were reduced by up to 80% by treatment with 100 mpk 1-palmitoyl-2-linoleoyl-3-
acetyl-rac-glycerol (PLAG) compared with that in control mice. PLAG treatment also reduced the 
migration of the primary tumors. Interestingly, substantial neutrophil infiltration was observed in 
the tumors in control mice. The neutrophil contribution to A549 cell metastatic activity was 
examined in in vitro co-culture system. Metastatic activity could be achieved in the A549 cells 
through epidermal growth factor receptor (EGFR) transactivation mediated by protease activating 
receptor 2 (PAR2) receptor. Neutrophil elastase secreted from tumor-infiltrating neutrophils 
stimulated PAR2 and induced EGFR transactivation. However, this transactivation was inhibited 
by inducing PAR2 degradation following PLAG treatment and metastatic activity was effectively 
inhibited. PLAG attenuated cancer metastatic activity via modulated PAR2/EGFR transactivation 
by accelerating PAR2 degradation. These results suggest PLAG as potential therapeutic agent to 
combat tumor metastasis via regulating the activation signal pathway of PAR2 by tumor infiltrate-
neutrophils. 

Keywords: PLAG; anti-metastasis; tumor infiltrated-neutrophils (TINs); PAR2 degradation; EGFR 
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1. Introduction 

Lung cancer has a much higher mortality rate than other cancers [1,2]. Lung cancer is not easily 
detected at an early stage and has robust metastatic activity, which contributes to the low survival 
rate. Metastasized lung cancer is frequently observed in the brain, liver, and intestines, making it 
difficult to treat with conventional therapies [3–5]. The survival rate of patients varies significantly 
according to the metastasis. The metastatic activity of lung carcinoma is strongly affected by 
overactivation of growth factors, eventually leading to metastasis and poor prognosis [6,7]. Hence, 
drug development against metastasis is crucial for the treatment of lung cancer. 

Tumor-infiltrating neutrophils (TINs) play vital roles in the abnormal growth and metastasis via 
activates specific signaling pathways [8–10]. Especially, signaling pathways stimulated by elements 
from TINs such as neutrophil elastase was known to actively induce cancerous process and metastatic 
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activity [11,12]. For this reason, tumor tissues recruited neutrophils into the tissues through various 
pathways. Tumor tissues recruit neutrophils by releasing chemotactic chemokines [13–16], and 
secrete growth factors, causing an abnormal increase in the number of neutrophils [17–19]. Recent 
studies showed that it is possible to inhibit tumor progression by suppressing the recruitment of 
neutrophils to cancer tissues [20,21]. TINs communicate with cancer cells. In particular, neutrophil 
elastase released from activated neutrophils stimulates protease activating receptor 2 (PAR2) in 
cancer, leading to the activation of EGFR via HB-EGF and the induction of uncontrolled progression 
[22–24]. The continuous production of neutrophil elastase by TINs maintains the EGFR activity of 
cancer through PAR2 stimulation. 

The over-activation of EGFR in cancer is a major reason for metastasis. In particular, the 
overexpression of EGFR found in many lung carcinomas is one of the leading causes of poor 
prognosis [25–27]. EGFR, which can be over-activated through various pathways, regulates the 
expression of EMT-inducing factors, thereby forming a condition in which cancer can migrate to other 
tissues [28,29]. Previous studies have investigated cross-activation of EGFR by factors in the 
surrounding environment is crucial factors to cancer progression [24,30,31]. Especially, PAR2/EGFR 
over-activation caused by TINs was shown to be an essential part of metastasis. Hence, the blocking 
of PAR2 activation might be a core device for inhibition of neutrophil-mediated EGFR activation. 
Furthermore, it might be possible to attenuate neutrophil-mediated tumor metastasis. 

The 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) is present in the antlers of the Sika deer 
and can be synthesized from glycerol, palmitic acid, and linoleic acid [32]. PLAG was recently shown 
to reduce the gemcitabine-induced neutropenia, oral mucositis and arthritis by modulating 
neutrophil movement [33–35]. There have not yet been any studies to determine if PLAG has the 
potential to control cancer progression by regulating neutrophil infiltration. 

We constructed an animal model using orthotopically implanted A549 human lung cancer and 
monitored metastatic activity in order to evaluate the efficacy of PLAG for the inhibition of 
metastasis. We also used in vitro assays to verify the biological activity of PLAG. Our results showed 
that PLAG effectively inhibits tumor metastasis by blocking EGFR transactivation via prompt PAR2 
degradation. PLAG might therefore be utilized as a novel drug to inhibit the metastasis of lung 
cancer. 

2. Results 

2.1. PLAG Inhibited Metastasis of A549 Human Lung Cancer in an Orthotopic Mouse Model. 

Mice were orthotopically implanted with RFP-labeled A549 human cancer and either left 
untreated (control) or treated with 25, 50 or 100 mpk PLAG (Figure 1a). At 20 weeks after 
implantation, all five mice were alive in the PLAG 100 mpk group, four of the five mice were alive in 
the PLAG 50 mpk group, and one of the five mice was alive in the control group (Figure 1b). 
Bodyweight gradually decreased in the control group but not in the 50 and 100 mpk PLAG groups 
(Figure 1d) Metastasized A549 cells were observed in the intestines of the mice 8 weeks after 
implantation. The PLAG treatment reduced the numbers of metastasized cells in the intestines, 
inhibiting metastasis by more than 80% in the PLAG 100 mpk group compared with that in the 
control group (Figure 1c). At 14 weeks after cancer cell implantation, the 50 and 100 mpk PLAG 
treatments showed an inhibitory effect on the metastasis (Figure 1e and 1f). 
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Figure 1. Inhibition of cancer metastasis by 1-palmitoyl-2-linoleoyl-3-acetyl-rac-glycerol (PLAG) in 
the A549-orthotopically implanted mouse model: (a) Experimental design to evaluate the anti-
metastatic effect of PLAG in the A549-orthotopically implanted mouse model; (b) Analysis of overall 
survival (OS) among PLAG-treated A549-orthotopically implanted mice over 20 weeks; (c) Analysis 
of tumor metastasis in PLAG-treated mice by in vivo imaging system (IVIS) imaging at 2-week intervals; 
(d) Weight change in PLAG co-treated mice evaluated over 8 weeks; (e) Change in RFP-positive areas 
in each group estimated by Living Image software; (f) The RFP-positive areas in each group were 
compared after 8 weeks. Compared with the positive control group: ***p < 0.001 (each experiment n = 
5). N.S., not significant. Mean ± SD. NC; negative control, PC; positive control, Del; delivery 

2.2. Treatment with 100 mpk PLAG Reduced Metastasis to the Brain and Intestines. 

At 14 weeks after A549 cell implantation, the mice were sacrificed, and the brains and intestines 
were analyzed by hematoxylin and eosin (H&E) staining, immunohistochemical staining, and IVIS 
imaging. IVIS imaging of RFP-labeled A549 cells revealed that 100 mpk PLAG treatment inhibited 
metastasis to the brain and intestines by 93% and 83%, respectively (Figure 2a, 2b, 2c, and 2d). 
Labeling with human-specific antibodies to Ki67 and CK18 also revealed metastasis in the brain and 
intestinal tissues that was markedly reduced by the 100 mpk PLAG treatment (Figure 2e and 2f). 
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Figure 2. Inhibitory effects of PLAG on tumor metastasis: (a) Inhibition of tumor metastasis into the 
brain in PLAG-treated mice was verified by immunohistochemical staining with anti-Ki67 and anti-
CK18 antibodies; (b) The RFP-positive MFI value in the brain regions of each group. Compared with 
the negative control group: *p < 0.05, **p < 0.01, *** p < 0.001. N.S., not significant. Compared with the 
positive control group: ## p < 0.01 (each experiment n = 5). N.S., not significant. Mean ± SD; (c) 
Inhibition of tumor metastasis into the intestines in PLAG-treated mice was verified by 
immunohistochemical staining with anti-Ki67 and CK18 antibodies; (d) The RFP-positive MFI value 
in the intestines of each group were calculated. Compared with the negative control group: * p < 0.05, 
** p < 0.01, *** p < 0.001. N.S., not significant. Compared with the positive control group: ## p < 0.01 
(each experiment n = 5). N.S., not significant. Mean ± SD; (e) The area of cancer metastasis to the brain 
region was evaluated using human-specific antibodies against Ki67 and CK18. Compared with the 
negative control group: * p < 0.05, ** p < 0.01, *** p < 0.001. N.S., not significant. Compared with the 
positive control group: ## p < 0.01 (each experiment n = 5). N.S., not significant. Mean ± SD; (f) The 
area of cancer metastasis to the gastrointestinal tract was evaluated using human-specific antibodies 
against Ki67 and CK18. Compared with the negative control group: * p < 0.05, ** p < 0.01, *** p < 0.001. 
N.S., not significant. Compared with the positive control group: ## p < 0.01 (each experiment n = 5). 
N.S., not significant. Mean ± SD. 

2.3. PLAG Treatment Inhibited the Growth of A549 Human Lung Cancer in Mice. 

CT scans revealed that treatment with PLAG reduced A549 tumor growth in the mouse lungs 
compared with control mice at 12 weeks after the implantation (Figure 3a). Those observations were 
confirmed by IVIS imaging of lung tissues isolated in sacrificed mice (Figure 3b). The 100 mpk PLAG 
treatment dramatically reduced the RFP-positive area in the lung tissue (Figure 3c). Reconstituted 
whole-lung images with H&E staining revealed that the alveolar tissues were filled with growing 
A549 cells in the positive control mice the and delivery mice, whereas PLAG treatment reduced the 
numbers of cancer cells in the alveolar tissues. The lesion areas in the whole lungs were calculated 
using the intensity of stained condensation (Figure 3d and 3e). The presence of growing A549 cells in 
the mouse lungs was verified by immunostaining with anti-Ki67 and CK18 antibodies. The lung 
tissues from both control groups showed strong immunostaining, whereas those from the PLAG-
treated mice showed much weaker immunostaining (Figure 3e). 
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Figure 3. Inhibitory effects of PLAG on A549 human lung cancer cells implanted in mice: (a) 
Orthotopic tumor cell proliferation in mouse lungs determined by CT imaging; (b, c) Orthotopic 
tumor cell proliferation in mouse lungs determined by IVIS imaging. Compared with the negative 
control group: ** p < 0.01, *** p < 0.001 (each experiment n = 5). N.S., not significant. Mean ± SD; (d) 
Evaluation of the main tumor region in PLAG-treated lung tissues after implantation with A549 cells. 
The volume of alveolar space occupied by tumor cells was measured and compared with that in 
negative control mice using Image J. Compared with the negative control group: ** p < 0.01, *** p < 
0.001. N.S., not significant. Compared with the positive control group: # p < 0.05, ## p < 0.01 (each 
experiment n = 5). N.S., not significant. Mean ± SD; (e) Tumor growth in PLAG-treated lung tissues 
evaluated by H&E staining and immunohistochemical staining with anti-Ki67 and anti-CK18 
antibodies 14 weeks after implantation; (f) Labeling with anti-neutrophil and neutrophil elastase 
antibody showed that PLAG treatment reduced the numbers of tumor-infiltrating neutrophils in the 
orthotopic lung tumors. 

2.4. The Metastatic Properties of A549 Cells were Promoted by the Tumor-Infiltrating Neutrophil 
Environment and Attenuated by PLAG.  

Recent studies have shown that TINs play a crucial role in tumor proliferation and tumor 
metastasis [21,36,37]. Infiltrating neutrophils in the primary tumors were identified by 
immunostaining with anti-Ly6G antibody. TINs were abundant in the lung tissues of the control 
groups (Figure 3f). Based on this result, we aimed to verify the regulatory effect of PLAG on the 
metastatic activity of cancer cells by TINs using in vitro co-culture system. 

The promotion of metastatic tumor characteristics by neutrophils was examined using a co-
culture system employing trans-well plates (Figure 4e). The porous membrane separating the two 
chambers of the co-culture system allowed the transfer of intercellular signaling molecules such as 
cytokines and neutrophil elastase. The upper chamber contained A549, and the bottom chamber 
contained differentiated HL60. A549 cells moved from the top chamber to the bottom after exposure 
to the neutrophil; however, treatment with PLAG abolished that invasive activity (Figure 4a). In a 
wound healing assay, the healing of the simulated wound by A549 cells was enhanced by the 
presence of neutrophil; however, treatment with PLAG abolished that mobility of the cancer cells 
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(Figure 4c and 4e). The migration and invasive activity of cancer cells are mainly dependent on the 
EMT [38]. The modification of EMT-related molecules in A549 cells co-cultured with neutrophils was 
evaluated by RT-PCR. E-cadherin levels were reduced in the neutrophil-stimulation, whereas the 
levels of EMT markers were increased. PLAG treatment returned the EMT-related molecules to 
normal levels (Figure 4c and 4d). Spheroid assays were conducted to evaluate the promotion of A549 
progression as a result of direct contact between GFP-labeled A549 cells and neutrophils. Invasive 
characters, scattering, and outgrowth of A549 cells were observed after 7 days and 10 days of co-
culture, but those abnormal activities were not observed when the PLAG treatment (Figure 4f). 
Together, these results showed that TINs play a pivotal role in enhancing the metastasis, whereas 
PLAG strongly attenuates the neutrophil-induced promotion of metastatic tumor activity. 

 
Figure 4. Inhibitory effect of PLAG on metastasis in the tumor-infiltrating neutrophil 
microenvironment: (a) PLAG inhibited the invasive activity of A549 cells in the presence neutrophil. 
Compared with negative controls: * p < 0.05, *** p < 0.001. N.S., not significant. Compared with positive 
controls: # p < 0.05, ### p < 0.001 (each experiment n = 5). Mean ± SD; (b, c) Inhibitory effect of PLAG 
on cancer cell mobility was evaluated and analyzed by wound healing assay. Compared with 
negative control; * p < 0.05, *** p < 0.001. Compared with the positive control group: ### p < 0.01 (each 
experiment n = 5). Mean ± SD. Modulation of E-cadherin and N-cadherin by PLAG in the presence of 
neutrophil stimulation in A549 cells observed by confocal microscopy; (d) Modulation of EMT-related 
gene expression in PLAG and neutrophil co-treated A549 cells was evaluated by RT-PCR; (e) A 
diagram showing the way that A549 lung cancer cells are activated by neutrophils via indirect contact 
between cancer cells and neutrophils; (f) The inhibitory effect of PLAG in the spheroid invasion assay 
of A549 cells was calculated on the basis of cells scattering, which is mediated by direct contact with 
neutrophils. 

2.5. EGFR Transactivation for Metastatic Activity was Mediated by the PAR2 Receptor in the Presence of 
Neutrophils. 

To verify the enhancement of metastatic activity by the TINs, the PAR2 signaling pathway and 
EGFR activity of A549 cells mediated by neutrophil elastase were calculated. Western blot analysis 
for EGFR activity showed that the amount of phosphorylated EGFR was increased in A549 cells after 
neutrophil stimulation for 12 h, whereas co-treatment with PLAG abolished the neutrophil-induced 
enhancement of EGFR activity. In addition, c-Cbl phosphorylation and PAR2 degradation were 
observed in A549 cells after 18 h and 24 h of neutrophil stimulation (Figure 5a). PAR signal-mediated 
neutrophil elastase is crucial for EGFR trans-activity for metastasis [24,31]. The PAR2 or GPCR, 
activated by neutrophil elastase was assembled with β-arrestin-2 (βARR2) and ubiquitin ligase in 
some cases and subjected to intracellular trafficking as a form of endocytosis [39]. Accelerated 
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degradation of PAR2 in the PLAG co-treated A549 cells was verified by immunoprecipitation assay 
with anti-PAR2 antibody. For intracellular trafficking of PAR2, assembled βARR2 were detected in 
neutrophil-stimulated A549 cells, but 50 mpk PLAG co-treatment accelerated PAR2 degradation 
through prompt complex formation with c-Cbl and βARR2 (Figure 5c). Increased ubiquitination and 
degradation of PAR2 in the PLAG co-treated cells was verified by ubiquitination assay with PAR2 
antibody and by confocal microscopy (Figure 5d and 5e). HB-EGF secretion is crucial signaling 
pathway for EGFR transactivation mediated by GPCR [30,40]. Increased HB-EGF secretion was 
observed in the neutrophil-treated A549 cells, but the HB-EGF secretion was completely inhibited in 
PLAG co-treated cells (Figure 5f). Those results indicate that EGFR transactivation was induced in 
the presence of neutrophil stimulation via the PAR2 signaling pathway, and the transactivation was 
effectively inhibited in PLAG co-treated cells via prompt PAR2 degradation. Similar to the pattern of 
EGFR activation and PAR2 degradation observed in vivo, EGFR phosphorylation and PAR2 
expression were modulated by PLAG in the lung tissues of tumor-implanted mice (Figure 5g and 
5h). 

 

Figure 5. PLAG inhibition of EGFR transactivation mediated by the neutrophil elastase/PAR2/βARR2 
signaling pathway in A549 cells: (a) Inhibition of the EGFR signaling pathway and PAR2 degradation 
by PLAG treatment in neutrophil-stimulated A549 cells evaluated by Western blot; (b) Induction of ⍺ARR expression by PLAG treatment was confirmed by Western blotting; (c) Changes in complex 
formation between endocytosis-related proteins and PAR2 degradation following PLAG treatment; 
(d) Validation of the PAR2 ubiquitination-inducing effect of PLAG in neutrophil-activated A549 cells; 
(e) Lysosomal PAR2 degradation in PLAG-treated cells was verified by confocal microscopy; (f) 
Changes in HB-EGF secretion following PLAG treatment and neutrophil stimulation in A549 cells; 
(g) Phosphorylation of EGFR; (h) and expression of PAR2 in the lung tissues of A549-orthotopically 
implanted mice were prominently reduced by PLAG treatment. 

2.6. Neutrophil-Induced Metastatic Activity of A549 Cells was Dependent on PAR2 and β-Arrestin-2. 

The main factors in the neutrophil-induced stimulation of metastatic activity were verified by 
gene silencing of PAR2 and βARR2. Invasiveness, heparin binding-epidermal growth factor (HB-
EGF) secretion, modulated expression of EMT-related genes, and wound healing activity were 
abolished entirely in the PAR2 or βARR2-silenced (Figure 6a–6e). Those results suggest that the 
metastatic activity induced by neutrophils is dependent on PAR2 for recognition of neutrophil 
elastase and βARR2 for modulation of EMT-related molecules through PAR2 signaling. Activated 
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PAR2 undergoes intracellular trafficking via the βARR2 complex and thus modulates EMT-related 
gene expression via EGFR transactivation.  

 
Figure 6. PLAG inhibition of neutrophil-induced invasive activity in A549 cells verified by silencing 
of PAR2/βARR2 and GPIHBP1/⍺ARR cascade: (a) Neutrophil-induced enhancement of invasive 
activity in A549 cells was not observed in PAR2-silenced (siPAR2) or β-arrestin 2-silenced (siβARR2) 
cells. The inhibitory effect of PLAG on the enhancement of invasive activity in A549 cells disappeared 
in GPIHBP1-silenced (siGPIHBP1) and ⍺-arrestin-silenced (si⍺ARR) cells. Compared with the 
negative control group: ***p < 0.001. N.S., not significant. Compared with the positive control group: 
# p < 0.05, ## p < 0.01 (each experiment n = 5). N.S., not significant. Mean ± SD; (b) Enhanced HB-EGF 
secretion in neutrophil-stimulated A549 cells was not observed in siPAR2 cells or siβARR2 cells. The 
inhibitory effect of PLAG on the enhancement of HB-EGF secretion in A549 cells disappeared in 
siGPIHBP1 and si⍺ARR. Compared with the negative control group: * p < 0.05, *** p < 0.001. N.S., not 
significant. Compared with the positive control group: ## p < 0.01 (each experiment n = 5). N.S., not 
significant. Mean ± SD; (c) Modulation of EMT-related gene expression in neutrophil-stimulated A549 
cells with or without PLAG treatment in the target proteins silenced; (d, e) Cancer mobility in 
neutrophil-stimulated A549 cells with or without PLAG treatment in the target proteins silenced. 
Compared with the negative control group: *** p < 0.001. N.S., not significant. Compared with the 
positive control group: ### p < 0.001 (each experiment n = 5). N.S., not significant. Mean ± SD; (f) PAR2 
ubiquitination changes with or without PLAG treatment in the target proteins silenced. 

2.7. The Inhibitory Effect of PLAG on Neutrophil-Induced Metastatic Activity in A549 Cells was Dependent 
on GPIHBP1 and ⍺-Arrestin. 

The blocking of metastatic activity by PLAG in A549 cells was verified by gene silencing of the 
vesicle-recognizing receptor GPIHBP1. PLAG, an acetylated diacylglycerol, forms a vesicle in 
hydrophilic culture media under slight agitation. The PLAG vesicle is trapped and recognized by 
GPIHBP1 similarly to the way chylomicrons are recognized and trapped in peripheral tissues [41]. 
The modified vesicle surface with acetylation is recognized by its cognate cell-surface receptor and 
thus induces cellular signaling. PLAG treatment induced ⍺-arrestin (⍺ARR) in A549 cells (Figure 5b). 
Invasiveness, HB-EFG secretion, expression of EMT-related genes, and wound healing activity 
inhibition effects were significantly reduced in GPIHBP1-silenced A549 cells (Figure 6a–6e). The 
increased ⍺ARR level boosted GPCR intracellular trafficking, the formation of ⍺-arrestin complex 
including ubiquitin ligase, and eventually the degradation of GPCR [42]. Increased PAR2 
degradation was frequently detected in A549 cells with PLAG-induced elevation of ⍺ARR levels. 
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Together, the results suggest that PLAG induced ⍺ARR, and the degradation of neutrophil-
stimulated PAR2 was achieved via promotion of the ⍺ARR complex including ubiquitin ligase. 

PLAG forms vesicles in cell culture media and a major component of the micelle membrane, 
which is captured by GPIHBP1, a vesicle-capturing ligand of cancer cells. (P1) The captured PLAG 
itself stimulates cells and induces ⍺ARR expression. (P2 and 3) Increased ⍺ARR is swiftly assembled 
with ubiquitin ligase. (P4) Prompt degradation of PAR2 (desensitization). In conclusion, inhibition of 
metastatic activity by PLAG is mainly dependent on interference with the PAR2/EGFR/EMT signal 
cascade caused by prompt PAR2 degradation in cancer cells in the presence of neutrophils. 

3. Discussion 

The arbitrary modulation of metastatic behavior in tumor might be the best way to improve 
mortality rates among patients. Recent studies showed that neutrophil infiltration in primary tumors 
induces aggressive behaviors such as metastasis and abnormal proliferation [37,43,44]. Cancerous 
tissues often express chemokines for the recruitment of neutrophils. In particular, the expression of 
chemokines such as CXCLs leads to rapid recruitment of neutrophils. Neutrophils infiltrated in 
tumor tissue secrete elements such as neutrophil elastase and it induce tumor tissue overactivity. 
Neutrophils also promote metastasis by releasing cytokines and associating with circulating tumor 
cells [45–47]. In in vivo cancer models, the inhibition of CXCR2 reduces neutrophil recruitment to 
tumors and increases the efficacy of chemotherapy [44,48,49]. The progression inhibitors of tumor 
tissues targeting TINs so just focused on inhibiting TINs recruitment. However, the mechanism and 
substances that can regulate the activity of tumor by already infiltrated neutrophils have not been 
studied yet. 

In this study, we have identified an effect and mechanism of PLAG that inhibits the metastatic 
activity of tumor by infiltrated neutrophils. Our results revealed that PLAG treatment nearly 
abolished metastasis into the brain and intestines (Figure 1 and 2). In in vitro assays confirmed that 
migration and expression of EMT-related molecules were activated in presence of neutrophils and 
attenuated by PLAG (Figure 4). Those results suggest that PLAG effectively reversed the neutrophil-
induced aggressive properties of lung cancer and might therefore be useful as an anti-metastatic 
agent. 

Neutrophil elastase released from activated neutrophils is one of the major components that 
promote tumor metastasis [11,12,50]. The endogenous neutrophil elastase inhibitor is involved in 
inflammation-mediated tumor progression [51]. Our results confirmed that the metastatic properties 
induced by neutrophils and confirmed by invasion assays and wound healing assays were abolished 
in PAR2-silenced cells. Furthermore, the neutrophil-induced modulation of EMT-associated 
molecules was also absent in PAR2-silenced cells (Figure 6). 

High levels of ⍺ARR transcripts were observed in A549 cells within 60 min of stimulation with 
PLAG (Figure 5b). In addition, neutrophil elastase-stimulated PAR2 was assembled with ⍺, βARR, c-
Cbl (Figure 5c). Successive ubiquitination and degradation of c-Cbl-associated PAR2 were detected 
in PLAG-treated cells and primary lung tumors (Figure 5d and 5h). Those results suggest that the 
main role of PLAG in the retardation of tumor metastasis is the attenuation of EGFR transactivation 
via PAR2 degradation (Figure 7). The anti-metastatic effects of PLAG mediated by PAR2 degradation 
were validated in GPIHBP1-silenced or ⍺ARR-silenced cells (Figure 6). Overall, the results confirmed 
that PLAG effectively inhibited the metastasis of A549 lung cancer cells into the brain and intestines 
in the A549 orthotopic mouse model. The anti-metastasis effect of PLAG might be achieved by the 
disruption of PAR2 signaling, which mediates tumor cell activation in the presence of neutrophil 
elastase. 
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Figure 7. PAR2/EGFR-mediated expression of EMT-related genes; PLAG accelerates PAR2 
degradation through ⍺-arrestin expression and assembly of ubiquitin ligase: C1) Tumor-infiltrating 
neutrophils secrete neutrophil elastase, which stimulates the PAR2 receptor. C2) Neutrophil elastase-
stimulated PAR2 starts intracellular trafficking via assembly of βARR2 and clathrin (internalization 
complex). Internalized PAR2 leads to MMPs activation. C3-1) MMP cleavage of pre-HB-EGF and 
release of HB-EGF. C3-2) Internalization complex was detached from PAR2 and C4-2) PAR2 returns 
to the plasma membrane (re-sensitization). C4-1) Released HB-EGF stimulates EGFR and C5) EMT-
related gene expression. EGFR transactivation and signaling induces several genes involved in EMT 
of cancer cells. Major metastatic activity of cancer cells can be achieved through modulation of EMT-
related gene expression. 

PLAG has been studied in various inflammatory diseases including chemotherapy-induced 
neutropenia (CIN), chemo/radiation-induced oral mucositis (CRIOM), and rheumatoid arthritis (RA) 
[33–35]. Our results suggest that PLAG as a novel candidate molecule for the inhibition or retardation 
of tumor metastasis. Effective blocking of metastasis-promoting signals via PAR2 degradation by 
PLAG treatment offers a potential pathway for novel drug development. Taken together, our results 
suggest that PLAG might be used as a new anti-metastasis agent via regulating the activation signal 
pathway by neutrophils infiltrating cancer tissue. 

4. Materials and Methods 

4.1. Cell Culture 

A549 and HL60 cells were obtained from the American Type Culture Collection (ATCC, 
Manassas, MD, USA). Both types of cells were grown in Dulbecco’s modified Eagle medium (DMEM; 
WelGENE, Seoul, Korea) containing 10% fetal bovine serum (HyClone, Waltham, MA, USA) and 1% 
antibiotics (100 mg/L streptomycin, 100 U/mL penicillin) at 37 °C in a 5% CO2 atmosphere. To induce 
HL60 cells to differentiate into neutrophil-like cells, the cells were grown for 5 days in the presence 
of 10% DMSO. 
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4.2. Invasion Assay to Measure the Migration Activity of Cancer Cells 

Quantitative cell invasion assays were performed using a modified Boyden chamber (Costar-
Corning, NY, USA) on Matrigel-coated 24-well plates containing polycarbonate membrane inserts 
with 8.0 μm pores. The lower chamber was filled with neutrophils in complete medium. A549 cells 
(5 × 104 cells/mL) in 1% serum medium were added to the upper chamber with or without PLAG. 
The cells were allowed to invade for 24 h at 37 °C. Non-invasive cells were removed from the upper 
surface of the membrane by scraping with a cotton swab, and the numbers of cells that migrated 
across the membrane to the lower chamber were calculated by methylthiazolyldiphenyl-tetrazolium 
bromide(MTT) assay. 

4.3. Co-Culture System for Indirect Contact using Separated Chambers  

A549 cells were seeded in 6-well or 24-well plates. The pre-culture media was then removed, 
and 1.5 mL (for 6-well plates) or 0.5 mL (for 24-well plates) fresh media was added to each well. A 
polycarbonate membrane insert with 0.4-μm pores was then inserted into each well to create a 
modified Boyden chamber (SPL Lifescience, Seoul, Korea). Differentiated HL60 cells suspended 
medium were added to the upper chamber to stimulate the A549 cells. PLAG was added to the lower 
chamber 1 h before stimulation with the differentiated HL60 cells. The co-culture ratio between A549 
and dHL60 cells was combined at A549:dHL60 = 1:5. 

4.4. Immunofluorescence Staining and Wound Healing Assay 

A549 cells were seeded at a density of 2.5 × 106 cells/mL on 12-well plates with a cover glass and 
grown to 100% confluence. A wound was then made on the cell monolayer on the center of the well. 
The cultures were then treated with PLAG and neutrophil stimulation at 37 °C in a 5% CO2 
atmosphere. The cells were then fixed with 3.7% formaldehyde for 20 min and permeabilized with 
0.2% Triton X-100 for 20 min to stain the actin fibers. To stain for NCAD (Santacruz, sc-1502, 1:1000, 
Dallas, TX, USA) and ECAD (Santacruz, sc-7870, 1:1000, Dallas, TX, USA), the cells were fixed with 
3.7% formaldehyde for 20 min, washed with PBST twice, and reacted with specific antibodies 
overnight at 4 °C. The cells were then washed with PBST twice and reacted with secondary 
antibodies. Fluorescence was detected by confocal microscopy (Carl Zeiss, Thornwood, NY, USA). 
The degree of wound healing was quantified using Image J. 

4.5. Spheroid-Formation Assay to Examine Cancer Cell Scattering 

A total of 5 × 103 GFP-labeled A549 cells were plated onto an ultra-low binding clear U-bottom 
plate with 100 μL growth medium. The cells in the middle of the bottom of the plate were centrifuged 
and incubated for 5 days. Once spheroids were established, 70 μL of the culture medium was 
removed and replaced with 70 μL Matrigel containing neutrophils with or without PLAG. After 
incubation for 15 min, the Matrigel was hardened. Then, 50 μL growth medium was added and 
incubated for a predetermined time. The degree of spheroid scattering was determined and 
quantified using the Image Xpress system (Molecular Device Corporation, CA, USA) for GFP 
fluorescence detection. 

4.6. Analysis of Protein Degradation by Ubiquitination Assay 

A549 cells were treated with PLAG and stimulated with neutrophils for various times after 10 
μM MG132 pre-treatment for 2 h at 37 °C in a 5% CO2 atmosphere. The cells were then lysed using 
ice-cold immunoprecipitation lysis buffer (25 mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 1 mM 
EDTA, 5% glycerol). The extracted proteins were incubated with Surebeads Protein G-specific 
antibody-bound magnetic beads (Bio-Rad, CA, USA). The beads were then washed with PBST. 
Ubiquitination of PAR2 was eluted in 1× non-reducing sample butter and analyzed by Western blot. 
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4.7. Analysis of Secreted Proteins by ELISA 

The levels of HB-EGF secretion in the cell supernatants or mouse plasma were analyzed by 
factor-specific ELISA according to the manufacturer’s protocol (R&D Systems, MN, USA). The 
absorbance was measured at 450 nm using an EMax Endpoint ELISA microplate reader (Molecular 
Devices Corporation, CA, USA). 

4.8. Examination by Confocal Microscopy for Lysosome Co-Localization 

A549 cells were seeded on a 12-well plate with a cover glass and incubated to 60% confluence. 
The cells were then treated with PLAG and neutrophil stimulation for various times at 37 °C in a 5% 
CO2 atmosphere. The treated cells were fixed with 3.7% formaldehyde for 20 min, permeabilized with 
0.2% Triton X-100 (Sigma Aldrich, St. Louis, MO, USA) for 20 min, washed with PBST twice, and 
reacted with PAR2 antibody (Santacruz, sc-13504, 1:1000, Dallas, TX, USA) overnight at 4 °C. The 
cells were then washed with PBST twice and reacted with secondary antibody. Fluorescence was 
detected by confocal microscopy (Carl Zeiss, Thornwood, NY, USA) 

4.9. Analysis of Protein Assemblies by Immunoprecipitation 

A549 cells were treated with PLAG and stimulated with neutrophils for various times at 37 °C 
in a 5% CO2 atmosphere. The cells were then lysed in ice-cold immunoprecipitation lysis buffer (25 
mM Tris-HCl pH 7.4, 150 mM NaCl, 1% NP-40, 1 mM EDTA, 5% glycerol). The extracted proteins 
were incubated with Surebeads Protein G-specific antibody-bound magnetic beads (Bio-Rad, CA, 
USA). The beads were then washed with PBST, and target proteins were eluted in 1× sample buffer 
and analyzed by western blot. 

4.10. Analysis of Expressed Transcripts using Quantitative PCR 

Total RNA was extracted using RiboEx (GeneAll Biotechnology, Seoul, Korea) according to the 
manufacturer's instructions. cDNA was generated using the ReverseAids cDNA synthesis kit 
(Thermo Scientific, Waltham, MA, USA) according to the manufacturer's instructions. RT-PCR was 
performed with the following temperature profile: pre-denaturation for 10 min at 95 °C; 35 cycles of 
95 °C for 30 s, annealing temperature for 30 s, and 72 °C for 30 s; and a final exposure to 72 °C for 10 
min. 

4.11. Gene Silencing by Small Interfering RNA (siRNA) 

siRNA was purchased from Santa Cruz Biotechnology (Dallas, TX, USA). For transient 
transfection, cells were washed twice with PBS and resuspended in transfection buffer (Lonza, Basel, 
Switzerland) with siRNA. The cell and siRNA mixtures were placed in a Nucleocuvette and 
electroporated using a 4D-nucleofector (Lonza, Basel, Switzerland). After transfection, the cells were 
incubated in differentiation medium for 72 h and treated with PLAG and neutrophil stimulation for 
various times. 

4.12. Lung Cancer Orthotopic Implantation Model 

Male Balb/c nu/nu mice aged 5 weeks old were obtained from NARA biotech (Yong-in, South 
Korea) and housed in sterile filter-topped cages. The animals (n  =  5 for each treatment group) were 
anesthetized using isoflurane and put in a position of left lateral decubitus. A total of 2 × 106 RFP-
labeled A549 cells in a solution containing 20 μL culture medium and 20 μL Matrigel (BD Biosciences, 
NJ, USA) were directly injected through the intercostal space into the lung to a depth of 3 mm using 
a 29-G needle permanently attached to a 0.5-mL insulin syringe (Becton Dickinson, NJ, USA). The 
mice were then allowed to rest on a heating carpet until fully recovered. Starting 6 weeks after 
implantation of cells, the mice were given daily oral doses of 25, 50 or 100 mpk PLAG (n = 5 mice per 
group). A control group (n = 5 mice) was left untreated. Metastasis of the lung cancer cells to other 
tissues was detected by IVIS (PerkinElmer, MA, USA) every 2 weeks after implantation and by 
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computed tomography (CT) at 6 and 12 weeks after implantation. The animals were sacrificed 14 
weeks after implantation and perfused with PBS. The lung tissue and metastatic tissue regions were 
extracted and fixed with 10% formaldehyde. Hematoxylin and eosin (H&E) and 
immunohistochemical staining was performed on the tissue sections to survey the tissue 
morphology. All animal experiments were approved by the IACUC, Korea Research Institute of 
Bioscience & Biotechnology (approval number: KRIBB-AEC-18200).  

4.13. Overall Survival Analysis 

Cancer implantation and PLAG treatment were performed in the same manner as above. We 
plotted Kaplan-Meier survival curves 20 weeks after cancer implantation. This treatment was 
performed until the final observation week excluding death or moribundity. All animal experiments 
were approved by the IACUC, Korea Research Institute of Bioscience & Biotechnology (approval 
number: KRIBB-AEC-18127). 

4.14. Tumor Mass Scan by Computed Tomography  

Before the CT scan, the mice were anesthetized with isoflurane until complete relaxation. Then, 
the isoflurane concentration was reduced to 1% and maintained at that level during the rest of the 
experiment. While intubated, all animals were scanned with a Polaris G90 X-ray micro-CT 
(NANOfocusray, Seoul, Korea) with a source voltage of 80 kVp and a current of 75 μA. Six hundred 
projections were acquired with an exposure time of 500 ms per projection. The average scan time was 
20 min. All images were analyzed using a Horos DICOM program. 

4.15. Immunohistochemistry Staining 

Tissue specimens from the mice were fixed in 10% formaldehyde, embedded in paraffin, and 
sectioned into 5 μm slices. The sections were treated with 3% H2O2 for 10 min to block endogenous 
peroxidase activity and then blocked with bovine serum albumin. Then, the sections were washed in 
PBS and incubated with PAR2 (Santacruz, sc-13504, 1:100) and p-EGFR (Santacruz, sc-81488, 1:100), 
Ly6G (Abcam, ab-25377, 1:100), Neutrophil elastase (Abcam, ab-68672, 1:100) overnight at 4°C. 
Negative controls were incubated with the primary normal serum IgG for the species from which the 
primary antibody was obtained. 

4.16. Hematoxylin and Eosin Staining 

Tissue specimens from the mice were fixed in 10% formaldehyde, embedded in paraffin, and 
sectioned into 5-μm slices. The sections were stained with hematoxylin (Dako, Santa Clara, CA, USA) 
for 10 min and rinsed in Scott’s tap water (2% NaHCO3 in water). Then, the sections were washed in 
100% EtOH and stained with eosin (Dako, Santa Clara, CA, USA) for 5 min. Staining of whole-lung 
samples was determined using the Image Xpress detection system (Molecular Device Corporation, 
CA, USA). A total of 168 pictures (12 × 14) were taken at 10× magnification and stitched together into 
a single image. The lesion areas in the lung alveoli were analyzed using Image J.  

4.17. Statistics 

The data were analyzed using one-way ANOVA (Prism 8, GraphPad Software, La Jolla, CA, 
USA). p < 0.05 was considered statistically significant. 

5. Conclusions 

The various researchers have tried to suppress the metastasis of lung cancer using various 
substances. However, many substances could not effectively inhibit metastasis, or even if they 
inhibited, they could not be used because of their high human toxicity. 

Through the previous tests, we have found that the treatment of PLAG is harmless to humans. 
In addition, by effectively regulating immune function, several disease alleviation effects were 
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verified. In addition to these functions, we present objective data in this paper that PLAG treatment 
can effectively suppress abnormal metastasis of lung cancer cells. In particular, lung cancer metastasis 
model was used to prove that inhibition of PLAG metastasis is very effective objectively. A detailed 
description of the phenotype and the mechanism of action of PLAG is also presented. Considering 
the characteristics of PLAG without human toxicity, our results suggest that PLAG might play a 
significant role in the treatment of lung cancer. 
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